This task reviews how to recode variables so they are appropriate for your analytic needs and how to check your derived variables.
Recoding is an important step for preparing an analytical dataset. In this step, you will view programs that recode variables using different techniques for each of the scenarios listed on the Clean & Recode Data: Key Concepts about Recoding Variables in NHANES page. In the code below, each statement required for recoding is listed with explanations.
Use the generate command to create a new, derived variable (e.g., raceth) based on re-grouping the ridreth1 values. Use the recode command to create an age categorical variable (age3cat) from a continuous variable.
gen raceth=1 if ridreth1==3
replace raceth=2 if ridreth1==4
replace raceth=3 if ridreth1==1
replace raceth=4 if ridreth1==2 |
ridreth1==5
recode ridageyr (min/19=.) (20/39 = 1)
(40/59 = 2) (60/85 = 3), generate(age3cat)
Use this set of functions to count systolic and diastolic blood pressure readings. Use the foreach loop command to set any diastolic blood pressure readings of "0" to missing.
gen n_sbp= !missing(bpxsy1)+
!missing(bpxsy2)+ !missing(bpxsy3)+ !missing(bpxsy4)
gen n_dbp= !missing(bpxdi1)+
!missing(bpxdi2)+ !missing(bpxdi3)+ !missing(bpxdi4)
foreach i in bpxdi1 bpxdi2 bpxdi3 bpxdi4 {
replace `i' =. if `i'==0
}
Use the egen command with the rowmean function to calculate the mean systolic and diastolic blood pressures.
egen mean_sbp = rowmean(bpxsy1 bpxsy2
bpxsy3 bpxsy4)
egen mean_dbp = rowmean(bpxdi1 bpxdi2
bpxdi3 bpxdi4)
Use the following set of commands to define a new variable hbp (high blood pressure=1 or 0), based on a series of conditions that indicate hypertension from the questionnaire and examination variables.
gen hbp_trt=1 if bpq050a==1
replace hbp_trt=0 if hbp_trt !=1 &
(bpq020==1 | bpq020==2) & (bpq050a !=7 | bpq050a !=9)
gen sbp140=1 if mean_sbp>=140 & mean_sbp<.
& ((n_sbp >0 & n_sbp <.) & (n_dbp >0 & n_dbp <.))
replace sbp140=0 if sbp140 !=1 & ((n_sbp >0
& n_sbp <.) & (n_dbp >0 & n_dbp <.))
gen dbp90=1 if mean_dbp>=90 & mean_dbp<. &
((n_sbp >0 & n_sbp <.) & (n_dbp >0 & n_dbp <.))
replace dbp90=0 if dbp90 !=1 & ((n_sbp >0 &
n_sbp <.) & (n_dbp >0 & n_dbp <.))
gen hbp=1 if (hbp_trt==1 | sbp140==1 |
dbp90==1) & ((hbp_trt>=0 & hbp_trt<.) & (sbp140>=0 & sbp140<.) & (dbp90>=0 &
dbp90<.))
replace hbp=0 if hbp !=1 & ((hbp_trt>=0 &
hbp_trt<.) & (sbp140>=0 & sbp140<.) & (dbp90>=0 & dbp90<.))
Use the following set of commands to define a new variable, hlp (hyperlipidemia = 1 or 0), based on a series of conditions that indicate high lipid levels from the questionnaire and examination variables.
gen hlp_trt=1 if bpq100d==1
replace hlp_trt=0 if hlp_trt !=1 &
(bpq080==1 | bpq080==2) & (bpq100d !=7 | bpq100d !=9)
gen hlp_lab=1 if lbxtc>=240 & lbxtc <.
replace hlp_lab=0 if hlp_lab !=1 & (lbxtc>=0
& lbxtc <.)
gen hlp=1 if ((hlp_lab >=0 & hlp_lab <.) &
(hlp_trt >=0 & hlp_trt <.)) & (hlp_lab==1 | hlp_trt==1)
replace hlp=0 if hlp !=1 & ((hlp_lab >=0 &
hlp_lab <.) & (hlp_trt >=0 & hlp_trt <.))
Use the save command to save all the derived variables to a new dataset (demo_bp3.dta).
save C:\Nhanes\Data\demo_bp3, replace
In this step, you will check to confirm that derived and recoded variables correctly correspond to the original variables.
Use the tabulate command with the bysort command to create a cross tabulation of the original categorical variables for race/ethnicity, high blood pressure and hyperlipidemia by their respective recoded variables for participants who were interviewed and examined in the MEC and who were age 20 years and older.
tab raceth ridreth1 if (ridageyr >=20 &
ridageyr <.) & ridstatr==2, missing
>bysort hbp_trt: tab bpq020 bpq050a if (ridageyr
>=20 & ridageyr <.) & ridstatr==2, row missing
bysort hbp hbp_trt: tab sbp140 dbp90 if (ridageyr
>=20 & ridageyr <.) & ridstatr==2, row missing
bysort hlp_trt: tab bpq080 bpq100d if (ridageyr
>=20 & ridageyr <.) & ridstatr==2, row missing
bysort hlp: tab hlp_trt hlp_lab if (ridageyr
>=20 & ridageyr <.) & ridstatr==2, row missing
Use the tabstat command to calculate the mean, minimum, and maximum values for the original continuous variables for participants who were interviewed and examined in the MEC and who were age 20 years and older. The by option will separate the original continuous variable into categories of the derived variables. This is done to check that coding of the derived variable, based on cut-off points of the continuous variable, is correct.
tabstat ridageyr if (ridageyr >=20 &
ridageyr <.) & ridstatr==2, by(age3cat) stat(n min max)
tabstat mean_sbp if (ridageyr >=20 &
ridageyr <.) & ridstatr==2, by(sbp140) stat(n min max)
tabstat mean_dbp if (ridageyr >=20 &
ridageyr <.) & ridstatr==2, by(dbp90) stat(n min max)
tabstat lbxtc if (ridageyr
>=20 & ridageyr <.) & ridstatr==2, by(hlp_lab) stat(n min max)
Highlighted items comparing recoded or derived variables to original variables: