Nitrate/Nitrite Toxicity
What Are the Health Effects from Exposure to Nitrates and Nitrites?
Course: WB 2342
CE Original Date: December 5, 2013
CE Renewal Date: December 5, 2015
CE Expiration Date: December 5, 2017
Download Printer-Friendly version [PDF - 1.1 MB]
Previous Section | Next Section |
Learning Objective |
Upon completion of this section, you will be able to
|
Introduction |
Unless conditions exist for reducing nitrate to nitrite in the gut (i.e., high pH and proper intestinal microbial flora), ingested nitrate (NO3-) is metabolized and excreted without producing apparent adverse effects.
Methemoglobinemia is the critical health effect from exposure to nitrates and nitrites. Depending on the percentage of total MetHb, the clinical presentation may be one of oxygen deprivation with cyanosis, cardiac dysrhythmias and circulatory failure, and progressive central nervous system (CNS) effects [Skold et al. 2011]. CNS effects can range from mild dizziness and lethargy to coma and convulsions [Fan and Steinberg 1996; Bradberry 2003; Osterhoudt 2001; Skold et al. 2011]. (See Table 3). |
Hematologic Effects |
Acute acquired methemoglobinemia is the most important adverse health effect caused by excessive nitrate or nitrite exposure. Methemoglobinemia inducers also work through other mechanisms outside of nitrate and nitrite formation [Nelson and Hostetler 2003; Flomenbaum et al. 2006; Hunter et al. 2011] (See Table 2). Methemoglobinemia may arise from various etiologies [Harvey et al. 2010; Greer and Shannon 2005; Wright et al. 1999; Nelson and Hostetler 2003]. These etiologies can be grouped into "acquired" and "congenital". The acquired methemoglobinemias can come from exogenous or endogenous causes. Exogenous Causes include
Endogenous Causes include
Genetic Causes include
"Pseudomethemoglobinemias" may occur from misinterpreted co-oximetry results and include sulfhemoglobinemia [Haymond et al. 2005]. Methemoglobin can be formed by directly oxidizing the iron within the hemoglobin molecule or indirectly causing oxidation through the release of free radicals [Lopez-Shirley et al. 1994; Wright et al. 1999; Nelson and Hostetler 2003; Skold et al. 2011]. Methemoglobinemia is a well-recognized hazard of ingestion of nitrates and nitrites [Hord 2011; Knobeloch et al. 2000; Harris et al. 1979; AAP 1970; Kross et al. 1992].
Hemoglobin molecules contain iron within a porphyrin heme structure.
A certain amount of physiologic MetHb formation occurs continuously because red blood cells are bathed in oxygen.
MetHb can be reduced back to hemoglobin by both NADH-dependent and NADPH-dependent (to a lesser degree) MetHb reductase enzymes. More specifically, the RBC systems responsible for methemoglobin reduction under physiologic conditions include (in order of decreasing methemoglobin reduction):
[Haymond et al. 2005; McKenzie 2010]. Methemoglobinemia occurs when these systems become overwhelmed, impaired, are lacking or when there is an inherited defect in the structure of the hemoglobin molecule itself (HbM disease) [Nelson and Hostetler 2003; DeBaun et al. 2011; McDonagh et al. 2013]. Two types of inherited enzyme deficiency methemoglobinemia exist. Erythrocyte reductase deficiency occurs when red blood cells lack the enzyme. Generalized reductase deficiency occurs when the enzyme isn't functional anywhere in the body [DeBaun et al. 2011].Figure 4. Oxy-Hemoglobin Dissociation Curve. Image Courtesy of Wikimedia Commons viewed in Grethlein SJ and Besa EC. (2012, June 25). Blood Substitutes. Medscape. Retrieved 10/22/13 from http://emedicine.medscape.com/article/207801-overview Blue line = Normal Hemoglobin Methemoglobinemia causes a leftward shift in the oxygen-hemoglobin dissociation curve as methemoglobin does not unload O2 from Hb. Sulfhemoglobin causes a right shift in the oxygen-hemoglobin dissociation curve. |
Cardiovascular Effects |
Hypotension is the main cardiovascular effect seen with nitrate and nitrite medications and previously thought to be uncommon with ingestion of nitrates and nitrites in food and water. However, there have been recent studies looking at potential benefits of dietary inorganic nitrates in promoting cardiovascular health [Lundberg et al. 2011; Larsen et al. 2010; Lauer et al. 2008; Sobko et al. 2010; Vanhatalo et al. 2010; Carlstrom et al. 2011; Casey et al. 2007; Webb et al. 2008]. Angina-like pain, MI and cardiovascular death have been reported in explosive manufacturing industry workers exposed to nitroglycerin and other aliphatic nitrates [Hogstedt and Axelson 1977; Hannerz and Greitz 1992; RuDusky 2001]. In the body, nitroglycerin (similar to other nitrites and organic nitrates) is metabolized to nitric oxide (NO) which stimulates a series of events that eventually results in release of calcium ions from smooth muscle cells leading to relaxation and vasodilation. Increased blood flow in the middle cerebral artery and increased cerebrospinal fluid pressure have been correlated with headache after nitroglycerin exposure [Hannerz and Greitz 1992]. Since the late 1800s, there have been anecdotal reports of explosives workers placing small amounts of explosives in their hatbands when away from work to avoid "powder head" headaches and chest pain on their return to work [Rosenman 2007]. Take home exposures to nitrate dusts on work clothes have been reported to cause headache in exposed family members [Rosenman 2007]. Anecdotal reports of "sudden death' or "Monday morning angina" leading to death were first described in the 1930s as having been associated with dermal absorption of nitroglycerin and ethylene glycol dinitrate, particularly after being away from work/exposure for a short period of time (i.e. a couple of days/over weekends). Rebound coronary spasm from withdrawal of nitrates is thought to be the underlying mechanism [RuDusky 2001]. Some studies have shown increases in mortality among occupational cohort's months to years after exposure which would suggest other processes may be involved. Studies and post autopsy reports have supported increased mortality from strokes and heart disease from chronic exposure [Rosenman 2007]. Other studies have not shown increased cardiovascular disease risk from occupational exposure to nitrates [Stayner et al. 1992]. |
Reproductive and Developmental Effects |
Maternal exposure to environmental nitrates and nitrites may increase the risk of pregnancy complications such as
Recent epidemiologic data have suggested an association between developmental effects in offspring and the maternal ingestion of nitrate from drinking water such as
However, a definite conclusion on the cause-and-effect relationship cannot be drawn (i.e. in some studies, the potential for confounding could not be determined with certainty due to lack of individual exposure assessment data, etc.) [Manassaram et al. 2006; Fan and Steinberg 1996; Grant et al. 1995; Huber et al. 2013]. The maternal transfer of nitrate, nitrite, and N-nitroso compounds and the potential effect on fetal death and malformation have been described [Bruning-Fann and Kaneene 1993]. Reproductive outcome studies performed at sites with high nitrate levels in the water supply provide some evidence of maternal transfer of nitrate and nitrite [Manassaram et al. 2006; Tabacova et al. 1997 and 1998; Croen et al. 2001]. Further study is needed to determine the relationship between maternal exposure to nitrates and nitrites and reproductive and developmental effects. |
Other Effects |
A few studies have hinted at a role for nitrate intake in the risk for developing diabetes mellitus in childhood [Kostraba et al. 1992; Virtanen et al. 1994; Parslow et al. 1997]. Raynaud phenomena and peripheral neuropathy have been reported in nitrate exposed workers [Rosenman 2007]. |
Carcinogenicity |
Some study results have raised concern about the cancer-causing potential of nitrates and nitrites used as preservatives and color-enhancing agents in meats [Norat et al. 2005; Tricker and Preussmann 1991]. Nitrates can react with amino acids to form nitrosamines, which have been reported to cause cancer in animals [Bruning-Fann and Kaneene 1993]. Elevated risk of non-Hodgkin's lymphoma [Ward et al. 1996] and cancers of the esophagus, nasopharynx, bladder, colon, prostate and thyroid have been reported [Cantor 1997; Eichholzer and Gutzwiller 1998; Barrett et al. 1998; Ward et al. 2010]. An increased incidence of stomach cancer was observed in one group of workers with occupational exposures to nitrate fertilizer; however, the weight of evidence for gastric cancer causation is mixed [Van Loon et al. 1998; Xu et al. 1992]. Epidemiological investigations and human toxicological studies have not shown an unequivocal relationship between nitrate intake and the risk of cancer [Alexander et al. 2010; Mensinga et al. 2003]. The International Agency for Research on Cancer (IARC) classifies nitrates and nitrites as "probably carcinogenic to humans" (Group 2A) under certain conditions (i.e. ingested nitrate or nitrite under conditions that result in endogenous nitrosation) which could lead to the formation of known carcinogens such as N-nitroso compounds [IARC 2010]. |
Key Points |
|
Progress Check |
Previous Section | Next Section |