Skip directly to search Skip directly to A to Z list Skip directly to navigation Skip directly to page options Skip directly to site content

Mining Publication: Directional Control-Response Compatibility Relationships Assessed by Physical Simulation of an Underground Bolting Machine

Original creation date: March 2014

Cover image of Directional Control-Response Compatibility Relationships Assessed by Physical Simulation of an Underground Bolting Machine

The authors examine the pattern of direction errors made during the manipulation of a physical simulation of an underground coal mine bolting machine to assess the directional control-response compatibility relationships associated with the device and to compare these results to data obtained from a virtual simulation of a generic device. Directional errors during the manual control of underground coal roof bolting equipment are associated with serious injuries. Directional control-response relationships have previously been examined using a virtual simulation of a generic device; however, the applicability of these results to a specific physical device may be questioned.

In this study, forty-eight participants randomly assigned to different directional control-response relationships manipulated horizontal or vertical control levers to move a simulated bolter arm in three directions (elevation, slew, and sump) as well as to cause a light to become illuminated and raise or lower a stabilizing jack. Directional errors were recorded during the completion of 240 trials by each participant. Directional error rates increased when the control and response were in opposite directions or if the direction of the control and response were perpendicular. The pattern of direction error rates was consistent with experiments obtained from a generic device in a virtual environment. The authors conclude that error rates are increased by incompatible directional control-response relationships. Ensuring that the design of equipment controls maintains compatible directional control-response relationships has potential to reduce the errors made in high-risk situations, such as underground coal mining.

Authors: LJ Steiner, R Burgess-Limerick, WL Porter

Peer Reviewed Journal Article - March 2014

NIOSHTIC2 Number: 20043705

Hum Factors 2014 Mar; 56(2):384-391


TOP