Skip directly to search Skip directly to A to Z list Skip directly to navigation Skip directly to page options Skip directly to site content

Mining Publication: Effectiveness of Selected Diesel Particulate Matter Control Technologies for Underground Mining Applications: Isolated Zone Study, 2004

Original creation date: August 2006

Image of publication Effectiveness of Selected Diesel Particulate Matter Control Technologies for Underground Mining Applications: Isolated Zone Study, 2004

The National Institute for Occupational Safety and Health conducted a study to determine the effects of selected, state-of-the-art emission control technologies on the ambient concentrations of particulate matter and gases emitted by underground diesel-powered mining equipment. Tests were conducted in an isolated zone of an underground mine to evaluate the effectiveness of alternative fuel formulations, namely, water-fuel emulsions, blended biodiesel fuels, ultralow sulfur diesel fuel, and #1 diesel; and selected exhaust aftertreatment devices, namely, diesel oxidation catalysts (DOCs), diesel particulate filter (DPF) systems, and filtration systems designed around high-temperature disposable filter elements. The results showed that using a cold-weather and warm-weather water-fuel emulsion formulation reduced mass concentrations of elemental carbon (EC) by about 70% and 85%, respectively. The 20% and 50% soy biodiesel blends reduced EC by 49% and 66%, respectively. The reductions were slightly less pronounced for the 20% and 50% yellow grease biodiesel blends-33% and 56%, respectively. EC concentrations were unaffected by using ultralow sulfur diesel in place of #1 diesel. Use of the reformulated fuels did not substantially alter the concentrations of nitric oxide and carbon monoxide. However, a measurable increase in the nitrogen dioxide (NO2) peak concentration was observed during the biodiesel tests. The ArvinMeritor (AM) fuel-burner DPF system with a palladium-catalyzed DOC reduced EC concentrations by 92%. The diesel filter elements from Donaldson Co., Inc., and Filter Service & Testing Corp. reduced the EC concentration of the mine air by 92% and 70%, respectively. When the palladium-based DOC was used with the AM DPF, it raised the average and peak downstream NO2 concentrations by a factor of three. Tests of the AM DPF system with a platinum-catalyzed DOC and CAP/ETG catalytic particulate oxidizer system had to be terminated because the elevated NO2 concentrations threatened to overexpose the operator. The tests with only a selected DOC also resulted in increased NO2 concentrations in mine air.

Authors: AD Bugarski, GH Schnakenberg, SE Mischler, JD Noll, LD Patts, JA Hummer

Report of Investigations - August 2006

NIOSHTIC2 Number: 20030929

U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Pub. No. 2006-138, Report of Investigations 9668, 2006 Aug; :1-77


TOP