Mining Publication: New Simulated Gas Detector Offers Realistic Training for Mine Rescue Teams
Original creation date: June 2010
The United States is trending away from traditional mine rescue contest training toward hands-on skills training that focuses on being better prepared for an actual mine emergency response. New technologies and engaging training exercises are providing more realistic experiences to mine rescue teams. The National Institute for Occupational Safety and Health (NIOSH), in partnership with LightsOn Safety Solutions (LightsOn SS), has just completed the first phase of a research investigation of a multi-gas simulated gas monitor system (GMS). This endeavor is designed to add a higher level of realism during mine rescue contests and training exercises. The GMS is a wireless simulation tool utilizing a personal computer, wireless local area network, and simulated gas detectors. It is designed to assist mine rescue team members to learn about gas detection, understand the significance of gas concentrations, and encourage subsequent decision-making actions by team members. Moreover, it eliminates the static practice of using printed gas readings on a cardboard placard (placed on the ground during training or contests) and replaces it with a more realistic method of receiving gas concentration readings using a simulated hand-held gas detector. In 2009, NIOSH tested the LightsOn SS GMS technology with twenty-three mine rescue teams during two separate field trials. The first was during mine rescue training in the presence of dense theatrical fog that simulated smoke. The second integrated the GMS into a mine rescue contest held in a simulated mine. The research objective was to determine if the GMS technology could be used by mine rescue teams instead of placards, whether the teams would accept the new device, and if its functionality was suitable, reliable, and practical. This paper provides a brief history of the development and testing of the GMS, a description of the GMS functions for this initial phase, and the plans for the next phase of research.
Authors: SB Bealko, DW Alexander, LL Chasko, J Holtan
Conference Paper - June 2010
NIOSHTIC2 Number: 20037504
Proceedings of the 13th U.S./North American Mine Ventilation Symposium, Sudbury, Ontario, Canada, June 13-16, 2010. Hardcastle S, McKinnon DL, eds., Sudbury, Ontario, Canada: MIRARCO - Mining Innovation, 2010; :3-8
See Also
- Assessing the Effects of Virtual Emergency Training on Mine Rescue Team Efficacy
- CFD Analysis on Gas Distribution for Different Scrubber Redirection Configurations in Sump Cut
- Development and Application of Reservoir Models and Artificial Neural Networks for Optimizing Ventilation Air Requirements in Development Mining of Coal Seams
- Exploring Virtual Mental Practice in Maintenance Task Training
- Mine Emergency Response Command Center Training Using Computer Simulation
- Modeling and Prediction of Ventilation Methane Emissions of U.S. Longwall Mines Using Supervised Artificial Neural Networks
- Modernization and Further Development of the NIOSH Mine Emergency Response Training System (MERITS), Phase 1
- SPONCOM - A Computer Program for the Prediction of the Spontaneous Combustion Potential of an Underground Coal Mine
- Technology News 545 - NIOSH Updates Spontaneous Combustion Assessment Software
- Technology News 549 - MFIRE 3.0 - NIOSH Brings MFIRE into 21st Century
- Page last reviewed: 9/21/2012
- Page last updated: 9/21/2012
- Content source: National Institute for Occupational Safety and Health, Mining Program