Skip directly to search Skip directly to A to Z list Skip directly to navigation Skip directly to page options Skip directly to site content

Mining Publication: Use of a Directional Spray System Design to Control Respirable Dust and Face Gas Concentrations Around a Continuous Mining Machine

Original creation date: December 2004

Image of publication Use of a Directional Spray System Design to Control Respirable Dust and Face Gas Concentrations Around a Continuous Mining Machine

A laboratory study assessed the impacts of water spray pressure, face ventilation quantity, and line brattice setback distance on respirable dust and SF6 tracer gas concentrations around a continuous mining machine using a sprayfan or directional spray system. Dust levels were measured at locations representing the mining machine operator and the standard and off-standard shuttle car operators, and in the return airway. The results showed that changes in all three independent variables significantly affected log-transformed dust levels at the three operator sampling locations. Changes in setback distance impacted return airway dust levels. Laboratory testing also identified numerous variable interactions affecting dust levels. Tracer gas levels were measured on the left and right sides of the cutting drum and in the return. Untransformed gas levels around the cutting drum were significantly affected by changes in water pressure, face ventilation quantity, and setback distance. Only a few interactions were identified that significantly affected these concentrations. Gas levels in the return airway were grouped by face ventilation quantity. Return gas levels measured at the low curtain quantity were generally unaffected by changes in water pressure or curtain setback distance. At the high curtain quantity, return airway gas levels were affected by curtain setback distance. A field study was conducted to assess the impact of these parameters in an actual mining operation. These data showed that respirable dust levels may have been impacted by a change in water pressure and, to a lesser extent, by an increase in curtain setback distance. A series of tracer gas pulse tests were also conducted during this study. The results showed that effectiveness of the face ventilation was impacted by changes in curtain flow quantity and setback distance. Laboratory testing supported similar conclusions.

Authors: GV Goodman, DE Pollock

Peer Reviewed Journal Article - December 2004

NIOSHTIC2 Number: 20025738

J Occup Environ Hyg 2004 Dec 1(12):806-815


TOP